Strategies to compute

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right]$$

- 1. Try plugging in the value.

 If denominator ≠ 0, done!
- 2. If denom = 0 & numerator \neq 0, the answer is $-\infty$, $+\infty$ or DNE. Examine the sign of the output from each side.
- 3. If denom = 0 & numerator = 0,
 Use algebraic methods discussed in
 class to simplify and cancel until one of
 them is not zero.

Here is a summary of algebra methods we discussed for the 3rd case:

Strategy 1: Factor/Cancel

Strategy 2: Simplify Fractions

Strategy 3: Expand/Simplify

Strategy 4: Multiply by Conjugate

Strategy 5: Change Variable (Optional)
Strategy 6: Compare to other functions
(Squeeze Thm)

Special note:

If the problem starts as two fractions, combine them into one.

Strategies to compute

$$\lim_{x\to\infty}f(x)$$

1. Is it a known limit?

$$\lim_{x \to \infty} \frac{1}{x^a} = 0, \quad \text{if } a > 0$$

$$\lim_{x \to \infty} e^{-x} = 0 , \lim_{x \to \infty} \ln(x) = \infty , \lim_{x \to \infty} \tan^{-1}(x) = \frac{\pi}{2}$$

2. Use algebra to rewrite it in terms of known limits:

Strategy 1: Multiply top/bottom by $\frac{1}{x^a}$, where a is the largest power.

Strategy 2: Multiply top/bottom by e^{-rx}.

Strategy 3: Multiply by conjugate.

Strategy 4: Combine Fractions.

Special note:

If there is a radical you may have to rewrite *x* under a radical.

If x is positive, then $x = \sqrt{x^2}$. If x is negative, then $x = -\sqrt{x^2}$.